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Nearest Neighbor Search
•Given a query point q, return the points closest to q
•Useful for finding similar objects in database.

•Brute force linear search is not practical in massive databases.

Applications: optical character recognition, k-nearest neighbor algorithm,
content-based image retrieval, maximum likelihood decoding...

Hashing

Advantages of Hashing
•Fast Query Speed

– By using hashing scheme, we can achieve constant or sub-linear search time
complexity.

– Exhaustive search is also acceptable because the comparison cost is cheap
now.

•Reduce Storage Cost

Introduction

To generate a code of m bits, PCAH performs PCA on X , and then
use the top m eigenvectors of the matrix XXT as columns of the
projection matrix W ∈ Rd×m. Here, top m eigenvectors are those
corresponding to the m largest eigenvalues {λk}mk=1, generally ar-
ranged with the non-increasing order λ1 ≥ λ2 ≥ · · · ≥ λm. Let
λ = [λ1, λ2, · · · , λm]T . Then

Λ = W TXXTW = diag(λ)

Define hash function
h(x) = sgn(W Tx)

PCAH

the idea of our IsoHash method is to learn an orthogonal matrix
Q ∈ Rm×m which makes QTW TXXTWQ become a matrix with equal
diagonal values. The effect of the orthogonal matrix Q is to make
each projected dimension has the same variance while keeping the
Euclidean distances between any two points unchanged.
Let

a = [a1, a2, · · · , am] with ai = a =

∑m
i=1 λi
m

, (1)

and
T (z) = {T ∈ Rm×m|diag(T ) = diag(z)},

M(Λ) = {QTΛQ|Q ∈ O(m)}, (2)
where O(m) is the set of all orthogonal matrices in Rm×m.
Problem 1. The problem of IsoHash is to find an orthogonal matrix Q
making QTW TXXTWQ ∈ T (a), where a is defined in (1).
Lemma 1. [Schur-Horn Lemma [3]] Let c = {ci} ∈ Rm and b = {bi} ∈ Rm

be real vectors in non-increasing order respectively, i.e., c1 ≥ c2 ≥ · · · ≥ cm,
b1 ≥ b2 ≥ · · · ≥ bm. There exists a Hermitian matrix H with eigenvalues c
and diagonal values b if and only if

k∑
i=1

bi ≤
k∑
i=1

ci, for any k = 1, 2, ...,m,

m∑
i=1

bi =

m∑
i=1

ci.

Corollary 1. There exists a solution to the IsoHash problem. And this solu-
tion is in the intersection of T (a) andM(Λ).

Isotropic Hashing

mAP on LabelMe and CIFAR data sets
Method LabelMe CIFAR

# bits 32 64 96 128 256 32 64 96 128 256
IsoHash-GF 0.2580 0.3269 0.3528 0.3662 0.3889 0.2249 0.2969 0.3256 0.3357 0.3600
IsoHash-LP 0.2534 0.3223 0.3577 0.3826 0.4274 0.1907 0.2624 0.3027 0.3223 0.3651

PCAH 0.0516 0.0401 0.0341 0.0307 0.0232 0.0319 0.0274 0.0241 0.0216 0.0168
ITQ 0.2786 0.3328 0.3504 0.3615 0.3728 0.2490 0.3051 0.3238 0.3319 0.3436
SH 0.0826 0.1034 0.1447 0.1653 0.2080 0.0510 0.0589 0.0802 0.1121 0.1535

SIKH 0.0590 0.1482 0.2074 0.2526 0.4488 0.0353 0.0902 0.1245 0.1909 0.3614
LSH 0.1549 0.2574 0.3147 0.3375 0.4034 0.1052 0.1907 0.2396 0.2776 0.3432

Training time on CIFAR .
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Experiment

•Lift step:
Given a T (k) ∈ T (a), we find the point Z(k) ∈M(Λ) such that
||T (k) − Z(k)||F = dist(T (k),M(Λ)), where dist(T (k),M(Λ))

denotes the minimum distance between T (k) and the points
inM(Λ).

•Projection step:
Given a Z(k), we find T (k+1) ∈ T (a) such that
||T (k+1) − Z(k)||F = dist(T (a), Z(k)), where dist(T (a), Z(k))

denotes the minimum distance between Z(k) and the points
in T (a).

The projection operation is easy to complete. For the lift op-
eration, we have the following Theorem 1 [1].
Theorem 1. Suppose T = QTDQ is an eigen-decomposition of T
where D = diag(d) with d = [d1, d2, ..., dm]T being T ’s eigenvalues
which are ordered as d1 ≥ d2 ≥ · · · ≥ dm. Then the nearest neighbor
of T inM(Λ) is given by

Z = QTΛQ. (3)

Algorithm 1 Lift and projection based IsoHash (IsoHash-LP)

Input: X ∈ Rd×n,m ∈ N+, t ∈ N+

• [Λ,W ] = PCA(X,m).
• Generate a random orthogonal matrix Q0 ∈ Rm×m.
• Z(0)← QT

0 ΛQ0.
• for k = 1→ t do

Calculate T (k) from Z(k−1)

Perform eigen-decomposition of T (k) to get QT
kDQk =

T (k).
Calculate Z(k) from Qk and Λ by equation (3).

• end for
• Y = sgn(QT

tW
TX).

Output: Y

Lift and Projection (LP)

• ITQ: ITQ uses an iteration method to find an orthogonal rotation matrix
to refine the initial projection matrix learned by PCA so that the quanti-
zation error of mapping the data to the vertices of binary hypercube is
minimized. Experimental results in [2] show that it can achieve better
performance than most state-of-the-art methods.
•SH: SH uses the eigenfunctions computed from the data similarity

graph for projection [5].
•SIKH: SIKH uses random projections to approximate the shift-invariant

kernels. As in [2, 4], we use a Gaussian kernel whose bandwidth is set
to the average distance to the 50th nearest neighbor.
•LSH: LSH uses a Gaussian random matrix to perform random projec-

tion.

Hashing Method

The objective function can be reformulated as follows [?]:

min
Q∈O(m)

F (Q) =
1

2
||diag(QTΛQ)− diag(a)||2F . (4)

The gradient∇F at Q can be calculated as

∇F (Q) = 2Λβ(Q), (5)

where β(Q) = diag(QTΛQ)− diag(a). Once we have comput-
ed the gradient of F , it can be projected onto the manifold
O(m) according to the following Theorem 2 [1]..
Theorem 2. The projection of∇F (Q) onto O(m) is given by

g(Q) = Q[QTΛQ, β(Q)] (6)

where [A,B] = AB −BA is the Lie bracket.
The vector field Q̇ = −g(Q) defines a steepest descent flow on
the manifold O(m) for function F (Q). Letting Z = QTΛQ and
α(Z) = β(Q), we get

Ż = [Z, [α(Z), Z]], (7)

where Ż is an isospectral flow that moves to reduce the objec-
tive function F (Q).

Algorithm 2 Gradient flow based IsoHash (IsoHash-GF)

Input: X ∈ Rd×n,m ∈ N+

• [Λ,W ] = PCA(X,m).
• Generate a random orthogonal matrix Q0 ∈ Rm×m.
• Z(0)← QT

0 ΛQ0.
• Start integration from Z = Z(0) with gradient computed

from equation (7).
• Stop integration when reaching a stable equilibrium

point.
• Perform eigen-decomposition of Z to get QTΛQ = Z.
• Y = sgn(QTW TX).
Output: Y

Gradient Flow
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