Weihao Kong

Research Interests

- o Learning from a large number of data sources: A common modern machine learning scenario involves a large amount of data contributed by a large number of heterogeneous data sources, with each data source providing a modest amount of data. How well can we learn in this setting? To what extent can a large number of sources compensate for the lack of data from each source? What is the fundamental limit of learning? This problem has been studied under multi-task learning, meta-learning, federated learning, few-shot learning, empirical bayesian by different communities.
 - Meta-learning for linear models: [1, 2]; Learning populations of binomial parameters: [3, 5, 10]
- o Estimating learnability: Without enough data to learn a good model for prediction, is it possible to tell whether a good model exists? This is surprisingly possible under linear model assumptions [7]. An analogs question can be asked in the contextual bandits setting: Without enough rounds to learn a good policy, is it possible to estimate the value of the optimal policy [4]?
- o Robust machine learning: How to design learning algorithms that are provably robust against a small fraction of malicious data/users? The problem becomes more and more pressing with the advancement of federated learning.

 Robust meta-learning and robust PCA: [1]; Robust linear regression: [6].

Education

- Sep 2013 Ph.D., Computer Science, advised by Gregory Valiant.
- Sep 2019 Stanford University
- Sep 2009 B.Eng., ACM-Honored class of Computer Science.
- Jun 2013 Shanghai Jiao Tong University

Professional Experience

- Sep 2019 Postdoc researcher, working with Sham M. Kakade.
 - present University of Washington
- July 2018 Visiting researcher, research on learning populations of parameters, hosted by Sham M. Kakade.
- Aug 2018 University of Washington
- Jun 2017 Visiting researcher, research on robust statistics, hosted by Ilias Diakonikolas.
- Aug 2017 University of Southern California
- Jun 2014 Research intern, research on nonparametric Bayesian approaches to clustering, supervised by Bo-June(Paul) Hsu.
- Sep 2014 Microsoft Research, Redmond
- Aug 2012 Research intern, research on an allocation algorithm for display advertising, supervised by by Tao Qin.
- April 2013 Microsoft Research Asia, IECA group

Teaching Experience

Teaching Assistant

- Spring 2017 CS168 Modern Algorithmic Toolbox, Instructor: Tim Roughgarden and Gregory Valiant.
 - Fall 2015 CS265 Randomized Algorithms and Probabilistic Analysis, Instructor: Gregory Valiant.
- Spring 2015 CS261 Optimization and Algorithmic Paradigms, Instructor: Tim Roughgarden.
 - Fall 2014 CS265 Randomized Algorithms and Probabilistic Analysis, Instructor: Gregory Valiant.

Services

Conference reviewer, COLT17, SODA18, ITCS18, AAAI 18, ICML 19, FOCS 19, NeurIPS 19, ICML 20, FOCS 20, RANDOM 20, NeurIPS 20.

Journel reviewer, Biometrika, Electronic Journal of Statistics, Journal of Machine Learning Research (JMLR), Transactions on Pattern Analysis and Machine Intelligence (TPAMI).

Organizer, Stanford Theory Seminar 16-17.

Publications

- [1] Weihao Kong, Raghav Somani, Sham Kakade, and Sewoong Oh. Robust meta-learning for mixed linear regression with small batches. arXiv preprint arXiv:2006.09702, 2020.
- [2] Weihao Kong, Somani Raghav, Zhao Song, Sham M Kakade, and Sewoong Oh. Meta-learning for mixed linear

- regression. In International Conference on Machine Learning (ICML), 2020.
- [3] Ramya Korlakai Vinayak, Weihao Kong, and Sham M Kakade. Optimal estimation of change in a population of parameters. arXiv preprint arXiv:1911.12568, 2019.
- [4] Weihao Kong, Gregory Valiant, and Emma Brunskill. Sublinear optimal policy value estimation in contextual bandits. *The 23rd International Conference on Artificial Intelligence and Statistics (AISTATS)*, 2020.
- [5] Ramya Korlakai Vinayak, Weihao Kong, Gregory Valiant, and Sham Kakade. Maximum likelihood estimation for learning populations of parameters. In *International Conference on Machine Learning (ICML*), 2019.
- [6] Ilias Diakonikolas, Weihao Kong, and Alistair Stewart. Efficient algorithms and lower bounds for robust linear regression. *In ACM-SIAM Symposium on Discrete Algorithms* (**SODA**), 2019.
- [7] Weihao Kong and Gregory Valiant. Estimating learnability in the sublinear data regime. *In Advances in Neural Information Processing Systems (NeurIPS)*, 2018.
- [8] David Cohen-Steiner, Weihao Kong, Christian Sohler, and Gregory Valiant. Approximating the spectrum of a graph. In *Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD)*. ACM, 2018.
- [9] Qingqing Huang, Sham M. Kakade, Weihao Kong, and Gregory Valiant. Recovering Structured Probability Matrices. In 9th Innovations in Theoretical Computer Science Conference (ITCS), 2018.
- [10] Kevin Tian, Weihao Kong, and Gregory Valiant. Learning populations of parameters. In *Advances in Neural Information Processing Systems* (*NIPS*), 2017.
- [11] Weihao Kong, Gregory Valiant, et al. Spectrum estimation from samples. *The Annals of Statistics*, 45(5):2218–2247, 2017.
- [12] Weihao Kong, Jian Li, Tie-Yan Liu, and Tao Qin. Optimal allocation for chunked-reward advertising. In Web and Internet Economics (WINE). Springer, 2013.
- [13] Weihao Kong and Wu-Jun Li. Isotropic hashing. In *Advances in Neural Information Processing Systems 25* (*NIPS*), 2012.
- [14] Weihao Kong, Wu-Jun Li, and Minyi Guo. Manhattan hashing for large-scale image retrieval. In Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR), 2012.
- [15] Weihao Kong and Wu-Jun Li. Double-bit quantization for hashing. In *Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence (AAAI)*, 2012.